Recording and labeling at a site along the cochlea shows alignment of medial olivocochlear and auditory nerve tonotopic mappings.
نویسنده
چکیده
Medial olivocochlear (MOC) neurons provide an efferent innervation to outer hair cells (OHCs) of the cochlea, but their tonotopic mapping is incompletely known. In the present study of anesthetized guinea pigs, the MOC mapping was investigated using in vivo, extracellular recording, and labeling at a site along the cochlear course of the axons. The MOC axons enter the cochlea at its base and spiral apically, successively turning out to innervate OHCs according to their characteristic frequencies (CFs). Recordings made at a site in the cochlear basal turn yielded a distribution of MOC CFs with an upper limit, or "edge," due to usually absent higher-CF axons that presumably innervate more basal locations. The CFs at the edge, normalized across preparations, were equal to the CFs of the auditory nerve fibers (ANFs) at the recording sites (near 16 kHz). Corresponding anatomical data from extracellular injections showed spiraling MOC axons giving rise to an edge of labeling at the position of a narrow band of labeled ANFs. Overall, the edges of the MOC CFs and labeling, with their correspondences to ANFs, suggest similar tonotopic mappings of these efferent and afferent fibers, at least in the cochlear basal turn. They also suggest that MOC axons miss much of the position of the more basally located cochlear amplifier appropriate for their CF; instead, the MOC innervation may be optimized for protection from damage by acoustic overstimulation.
منابع مشابه
Single-unit labeling of medial olivocochlear neurons: the cochlear frequency map for efferent axons.
Medial olivocochlear (MOC) neurons are efferent neurons that project axons from the brain to the cochlea. Their action on outer hair cells reduces the gain of the "cochlear amplifier," which shifts the dynamic range of hearing and reduces the effects of noise masking. The MOC effects in one ear can be elicited by sound in that ipsilateral ear or by sound in the contralateral ear. To study how M...
متن کاملEvidence for direct cortical innervation of medial olivocochlear neurones in rats.
We have investigated the morphological relationship between auditory cortex efferents and medial olivocochlear neurones. Using combined retrograde and anterograde tracing we describe close contacts between medial olivocochlear neurones and corticofugal terminals in the ventral nucleus of the trapezoid body. The data indicate a possible direct action of the auditory cortex on the activity of the...
متن کاملTonotopic gradients of Eph family proteins in the chick nucleus laminaris during synaptogenesis.
Topographically precise projections are established early in neural development. One such topographically organized network is the auditory brainstem. In the chick, the auditory nerve transmits auditory information from the cochlea to nucleus magnocellularis (NM). NM in turn innervates nucleus laminaris (NL) bilaterally. These projections preserve the tonotopy established at the level of the co...
متن کاملEvidence for an alteration of the tonotopic map in the gerbil cochlea during development.
We have investigated developmental alterations in the tonotopic projection of the gerbil lateral superior olive. Single neurons were characterized in the frequency domain and the recording site marked with fast green. Transverse tissue sections from the auditory brainstem of each animal were visualized with a video-equipped microscope, and the image was digitized for subsequent alignment. The t...
متن کاملCorticofugal modulation of peripheral auditory responses
The auditory efferent system originates in the auditory cortex and projects to the medial geniculate body (MGB), inferior colliculus (IC), cochlear nucleus (CN) and superior olivary complex (SOC) reaching the cochlea through olivocochlear (OC) fibers. This unique neuronal network is organized in several afferent-efferent feedback loops including: the (i) colliculo-thalamic-cortico-collicular; (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 115 3 شماره
صفحات -
تاریخ انتشار 2016